1. «Ультразвуковой контроль сварных швов»
Сварные швы являются самой массовой областью применения ультразвуковой дефектоскопии. Это достигается за счёт мобильности ультразвуковой установки, высокой производительности контроля, высокой точности, высокой чувствительности к любым внутренним (объёмным — поры, металлические и неметаллические включения; плоскостным — непровары, трещины), а также внешним, то есть поверхностным дефектам сварных швов (подрезы, обнижения валика усиления и т. п.)
2. «Толщинометрия»
При эксплуатации и ремонте оборудования часто возникает необходимость определить толщину стенки оборудования, измерить размеры отдельных деталей, определить толщину биметаллических наплавок, измерить остаточную толщину стенки изделия, подверженного износу вследствие особенностей технологического процесса и эксплуатации. К таким деталям обычно относятся трубы и фитинги, стенки сосудов и оболочки аппаратов, штампованные днища, изделия сложной конфигурации и пр.
Однако конструктивные особенности этих деталей не всегда позволяют измерить их обычными способами. Достаточно часто доступ к внутренней стороне изделия бывает затруднен или невозможен. Кроме того, порой возникает необходимость в определении размеров деталей без их демонтажа из узлов оборудования (шпильки, фланцы, оболочки аппаратов и др.). В этих случаях весьма эффективным методом контроля толщины является ультразвуковая толщинометрия
3. Визуально-измерительный контроль
При Визуально-Измерительном Контроле сварных швов зоной контроля является сварной шов и прилегающие к нему участки основного металла на ширине не менее 20 мм в каждую сторону от шва с двух поверхностей, если обе они доступны для осмотра.
4. Тепловой метод неразрушающего контроля
Тепловой контроль основан на измерении, мониторинге и анализе температуры контролируемых объектов. Основным условием применения теплового контроля является наличие в контролируемом объекте тепловых потоков. Процесс передачи тепловой энергии, выделение или поглощение тепла в объекте приводит к тому, что его температура изменяется относительно окружающей среды. Распределение температуры по поверхности объекта является основным параметром в тепловом методе, так как несет информацию об особенностях процесса теплопередачи, режиме работы объекта, его внутренней структуре и наличии скрытых внутренних дефектов.
5. Капиллярная дефектоскопия
Капиллярная дефектоскопия применяется при необходимости выявления малых по величине дефектов, к которым не может быть применен визуальный контроль
6. Вихретоковый метод неразрушающего контроля
Метод вихревых токов используется для контроля конструкций, изготовленных из токопроводящих материалов.